(Non-)displaceability of fibers of integrable systems has been an important problem in symplectic geometry. In this paper, for a large class of classical Liouville integrable systems containing the Lagrangian top, the Kovalevskaya top and the C. Neumann problem, we find a non-displaceable fiber for each of them. Moreover, we show that the non-displaceable fiber which we detect is the unique fiber which is non-displaceable from the zero-section. As a special case of this result, we also show the existence of a singular level set of a convex Hamiltonian, which is non-displaceable from the zero-section. To prove these results, we use the notion of superheaviness introduced by Entov and Polterovich.